Abstract

HNC is a major product of the dissociative recombination reaction of the important ionospheric ion HCNH +, although to date this neutral has not been identified within Titan's atmosphere, nor considered as a component in ionospheric or photochemical models. We have studied a simple pseudo-steady-state model for the formation and removal of HNC, in which the loss processes considered are HNC protonation by reaction with H-bearing ions; reaction with H atoms, yielding HCN; reaction with CH 3 radicals, to form CH 3CN; and reaction with a population of unidentified X radicals to yield further hypothesized products. Using the ion abundances of C. N. Keller et al. (1998, Planet. Space Sci. 46, 1157–1174) and of M. Banaszkiewicz et al. (2000, Icarus 147, 386–404), we find that the most important loss processes are the reactions with CH 3 and with other unidentified radicals. According to our calculations, the HNC concentration reaches a peak of 10 4–10 5 molecules per cubic centimeter at an altitude of 1000–1100 km (i.e., close to the ionospheric peak), but is very much reduced at lower altitudes. We find also that the HNC/HCN ratio in Titan's atmosphere may approach unity at the ionization peak altitude and above. We discuss prospects for the detection of HNC, or its reaction products, during the Cassini mission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.