Abstract

Aerobic glycolysis, a metabolic characteristic of malignant cells, can be exploited to increase the concentration of lactic acid selectivity in tumor tissues in vivo by systemic administration of glucose (E. Jähde and M. F. Rajewsky, Cancer Res., 42: 1505-1512, 1982). To investigate whether a more acidic microenvironment can enhance the effectiveness of cytocidal drugs, we have analyzed the colony-forming capacity of M1R rat mammary carcinoma cells exposed to bis-chloroethylating agents in culture as a function of extracellular pH (pHe). At pHe 6.2 the cytotoxicity of 4-hydroperoxycyclophosphamide, as measured by inhibition of colony formation, was potentiated by a factor of approximately 200 as compared to pHe 7.4. Similar results were obtained with mafosfamide, nitrogen mustard, nornitrogen mustard, melphalan, and chlorambucil; not, however, with ifosfamide. As indicated by experiments using the ionophor nigericin for rapid equilibration of pHe and intracellular pH (pHi; measured with pH-sensitive microelectrodes), modulation of drug action by varying pHe primarily resulted from the concomitant decrease in pHi. The acidic microenvironment enhanced cytotoxicity most effectively during the phase of cellular drug uptake and monofunctional alkylation of DNA. DNA cross-link formation appeared to be less affected by pH, and lowering of pHe during the phase of cross-link removal was only marginally effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.