Abstract

In this work we studied the changes of the electrical and optical properties after hydrogen plasma treatment of polycrystalline ZnO thin films grown under different atmosphere conditions. The obtained results show that the gas used during the growth process plays an important role in the way hydrogen is incorporated in the films. The hydrogen doping can produce radiative and non-radiative defects that reduce the UV emission in ZnO films grown in oxygen atmosphere but it passivates defects created when the films are grown in nitrogen atmosphere. Impedance spectroscopy measurements show that these effects are related to regions where hydrogen is mostly located, either at the grain cores or boundaries. We discuss how hydrogen strongly influences the initial semiconducting behavior of the ZnO thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.