Abstract

Abstract Electrolytic charging of hydrogen into Type 304L stainless steel at room temperature and 100 C (212 F) induced partial transformation) of the austenite to the some martensitic phases [α′ (bcc) and ε (hep)] as are formed by cold-working hydrogen-free austenite at low temperatures (−196 C) (−321 F). No evidence of a hexagonal hydride was found. The formation of the ε phase by cathodic charging suggests that hydrogen lowers the stacking fault energy of austenite. Hydrogen charging expands the austenite lattice, causes the dislocation and stacking fault density to increase with increasing hydrogen concentration, and causes dislocation movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.