Abstract

Two oxygen-free copper grades with purity of 99.99 % were studied by means of free decay inverted torsion pendulum at the temperature range of 90 – 300 K and frequencies of 0.5 – 2 Hz. One copper grade was oxygen free electrolytically refined copper with oxygen content of 1.2 wt. ppm. The other one was oxygen-free phosphorous-alloyed grade with oxygen content less than 5 wt. ppm and phosphorous content of 30 – 70 wt. ppm. Electrochemical hydrogen charging induces a complex internal friction peak in the studied copper grades. The observed internal friction peak has a relaxation origin with apparent activation enthalpy and pre-exponential factor for the oxygen-free grade of 0.276 ± 0.002 eV and 10-11.59 ± 0.08 s, respectively. The internal friction peak can be fitted by three broadened Debye peaks (P1, P2 and P3) with activation enthalpies and pre-exponential factors of 0.248 ± 0.003 eV and 10-11.4 ± 0.4 s; 0.297 ± 0.004 eV and 10-11.8 ± 0.2 s; 0.36 ± 0.04 eV and 10-12.7 ± 1.4 s, respectively. Phosphorous doping markedly reduces the height of the observed peak. It was also shown that prior deformation by tension suppresses high-temperature components of the complex internal friction peak. Mechanism of relaxation is presumably caused by interaction of H – H pairs (low-temperature component, peak P1), interaction of hydrogen atoms with dislocations (P2) and interaction of hydrogen with impurities (high-temperature component, peak P3). Absorption of hydrogen in the studied copper grades during electrochemical hydrogen charging was confirmed by the thermal desorption method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.