Abstract

Hydrogen atoms are usually considered chemisorbed at well-defined sites on surfaces. We advocate a completelydifferent view, and demonstrate that chemisorbed hydrogen exhibits pronounced quantum effects. The hydrogen atom is to a large degree delocalized in both ground and excited-stated configurations: a proper description can only be given in terms of hydrogen energy bands. An analogous picture emerges for hydrogen isotopes (including muon) diffusing interstitially in bulk metals. The ground state there corresponds to a self-trapped situation: a localized impurity with an associated lattice distortion field. A powerful computational scheme is presented, which entails (i) the construction of the potential energy field by the effective-medium theory; (ii) the three-dimensional solution of the hydrogen distribution from the protonic Schrödinger equation; (iii) the calculation of the forces exerted on the host atoms and their displacements; and (iv) the iteration to self-consistency. Examples are discussed for both bulk and surface hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.