Abstract

We study the effective interactions and the mass action constants for pair and triple associations in classical and quantum plasmas. Avoiding double counting, we derive new expressions for the mass action constants. The calculations resulted in values that were substantially smaller than the standard ones in relevant temperature ranges by up to 50 percent. On this basis, we determine the pressure of H, He and Li plasmas and the osmotic coefficient of electrolytes with higher charges such as, e.g., seawater. Classical and quantum Coulomb systems show strong similarities. The contributions in low orders with respect to the interaction e2 are suppressed by thermal and screening effects. The contributions of weakly bound states, near the continuum edge, to the mass action constants are reduced, replacing the exponential functions with cropped exponentials. The new mass action constants are consistent with well-known extended limiting cases of screening effects. We analyze classical examples including the salts CaCl2 and LaCl3, and a model of seawater including multiple associations. In the case of quantum systems, we follow the work of Planck–Brillouin–Larkin for H plasmas and study He and Li plasmas. The equation of state (EoS) for wide-density regions is obtained through the concatenation of the EoS for the low-density region of partial ionization with the EoS of degenerate plasmas, where all bound states are dissolved and Fermi, Hartree–Fock and Wigner contributions dominate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.