Abstract

Sodium borohydride (NaBH4) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells (PEMFC) because of its high theoretical hydrogen capacity. However, the slow and poor kinetic stability of hydrogen generation from NaBH4 hydrolysis limits its application. There are two main factors influencing the kinetics stability of hydrogen generation from NaBH4. One factor is that the alkaline by-products (NaBO2) of the hydrolysis reaction can increase the pH of the solution, thus inhibiting the reaction process. It mainly happens in the NaBH4 solution hydrolysis system. Another factor is that the monotonous increase in reaction temperature leads to uncontrollable and unpredictable hydrolysis rates in the solid NaBH4 hydrolysis system. This is due to the excess heat generated from this exothermic reaction in the initial reaction of NaBH4 hydrolysis. In this perspective, we summarize the latest research progress in hydrogen generation from NaBH4 and emphasize the design principles of catalysts for hydrogen generation from NaBH4 solution and solid state NaBH4. The importance of carbon as catalyst support material for NaBH4 hydrolysis is also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.