Abstract

A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]3+ has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the formation of CO, therefore, making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel. Different from conventional reforming method for hydrogen production, no additional alkaline or organic substances are required in this method. Valuable hydrogen can be obtained under ambient pressure at 70°C, corresponding TOF is 83.2h−1. This is an unprecedented success in reforming methanol to hydrogen. Effects of reaction conditions, such as reaction temperature, initial methanol concentration and the initial pH value of buffer solution on the hydrogen evolution are all systematically investigated. In a certain range, higher reaction temperature will accelerate reaction rate. The slightly acidic condition is conducive to rapid hydrogen production. These findings are of great significance to the present establishment of the carbon-neutral methanol economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.