Abstract

AbstractThe application of Mg for hydrogen storage is hindered due to the slow absorption of hydrogen in Mg films. Herein, the hydrogenation process is explored theoretically using density functional theory calculations, and energy barriers are compared for hydrogen diffusion through Pd nanoparticle/Mg film interfaces and their variations, i.e., Pd(H)/Mg(O). Decomposing the mechanism into basic steps, it is shown that Pd undergoes a strain‐induced crystallographic phase transformation near the interface, and indicated that hydrogen saturation of Pd nanoparticles enhances their efficiency as nanoportals. Using energetic arguments, it is explained why hydrogen diffusion is practically prohibited through native Mg oxide and seriously suppressed through existing hydride domains. Hydrogen flux is experimentally investigated through the nanoportals in Pd‐nanoparticle decorated Mg films by pressure‐composition isotherm measurements. An r ≈ t1/3 relationship is theoretically calculated for the radial growth of hemispherical hydride domains, and this relationship is confirmed by atomic force microscopy. The diffusion constant of hydrogen in Mg films is estimated as DHfilm ≈ 8 × 10−18 m2 s−1, based on transmission electron microscopy characterization. The unique nanoportal configuration allows direct measurement of hydride domain sizes, thus forming a model system for the experimental investigation of hydrogenation in any material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.