Abstract

Wood chips from bigtooth aspen (Populus grandidentata Michx.) were saccharified by reaction with liquid hydrogen fluoride either anhydrous or containing up to 10% v/v water. The reaction products were separated into a solid lignin fraction and a water-soluble saccharide fraction. The fluoride content of the lignin (determined after alkaline fusion) was initially about 1 mg/g wood, but was lowered to 0.1 mg/g wood by grinding and washing. Thus little or no chemical binding of fluoride to lignin occurred during hydrogen fluoride (HF) solvolysis. Analysis of the water-soluble fraction by gel filtration on Biogel P2 columns showed a range of low-molecular-weight oligosaccharides and only 10-20% sugar monomers. Thus considerable reversion occurred during HF evacuation. Posthydrolysis conditions were optimized for these reversion products by varying temperature and acid concentration. Optimal conditions at 1 h were 140 degrees C with 100mN sulfuric acid or 225mN Hydrofluoric acid resulting in monomer yields of > 90% for 0.5% sugar solutions and > 80% for 10% sugar solutions. After reaction of pure cellulose (Filter paper) with hydrogen fluoride in the absence of water, and terminating the reaction with calcium carbonate, the reaction intermediate alpha-D-glucopyranosylfluoride was isolated with a maximal yield of 0.2 g/g paper. Upon purification via paper chromatography glucosylfluoride was identified by its specific rotation and also by gas chromatography-mass spectrometry of its tetra-O-trimethylsilyl derivative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call