Abstract

This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrøm-Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology. Examples are chosen from the active protein folding field. Hydrogen exchange methods now make it possible to define the structure of protein folding intermediates in various contexts: as tenuous molten globule forms at equilibrium under destabilizing conditions, in kinetic intermediates that exist for less than one second, and as infinitesimally populated excited state forms under native conditions. More generally, similar methods now find broad application in studies of protein structure, energetics, and interactions. This article considers the rise of these capabilities from their inception at the Carlsberg Labs to their contemporary role as a significant tool of modern structural biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.