Abstract
Access to the fast exchange kinetics of labile protein hydrogens in solution is provided by exchange broadening of the water 1H NMR line. We analyzed the chemical shift modulation contribution of labile hydrogens in bovine pancreatic trypsin inhibitor (BPTI) to the transverse 1H spin relaxation rate, R2, of the bulk solvent. Both the experimental pH dependence and the CPMG dispersion of R2 could be quantitatively accounted for on the basis of known chemical shifts, exchange rates, and ionization constants for BPTI. This analysis provided, for the first time, the hydrogen exchange rate constants for Lys and Arg side chains in a protein and pointed to an internal catalysis of the N-terminal amino protons in BPTI by a salt bridge. The method can be used for mapping the hydrogen exchange rates in protein solutions and biomaterials, which may be important for the control of relaxation-weighted contrast in biological MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.