Abstract

Hydrogen-deuterium exchange is measured for the buried primary amide groups of Asn-43 and Asn-44 in bovine pancreatic trypsin inhibitor. Amide protons trans and cis to the amide carbonyl oxygen (HE and HZ, respectively) exchange at indistinguishable rates. Uncorrelated exchange of HE and HZ is established for both residues by following the nuclear Overhauser enhancement from HE to HZ during the deuterium exchange. The exchange of Asn-43 and Asn-44 side-chain protons differs qualitatively from exchange of primary amide groups in fully solvated model compounds, for which HE generally exchanges faster than HZ. The equal rates for the buried primary amide HE and HZ in BPTI are not a consequence of coupled exchange. The data indicate rapid rotation around the CO-NH2 bond for both Asn-43 and Asn-44 and suggest considerable lability of intramolecular hydrogen bonds. The side chain of Asn-43 has all of its polar atoms integrated into the very stable hydrogen-bonded structure of the protein. Asn-44 is hydrogen-bonded to side chains and to a buried water molecule. Solvent isotope exchange is several orders of magnitude more restricted by protein secondary and tertiary structure than the CO-NH2 rotation, indicating that N delta H2 groups flip many times before hydrogen isotope exchange occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call