Abstract

Hydrogen-exchange labeling methods can be used to identify functionally important changes at positions all through a protein structure, can monitor the effect at these positions of structure changes anywhere in the protein, and can quantify these effects in terms of change in structural-stabilization free energy. These methods were used to study effects at two widely separated positions in human methemoglobin (metHb). The results show that the observed changes in hydrogen-exchange behavior reflect changes in the global R-state to T-state equilibrium, and specifically that stabilizing salt links at the α-chain N-terminus and the β-chain C-terminus are reformed in the R-T transition. The strong allosteric effector, inositol hexaphosphate (IHP), switches R-state methemoglobin to the T-state, but achieves a T/R equilibrium constant of only ≈ 3 (at pH=6.5, 0°C). Addition of the weaker effector, bezafibrate (Bzf), promotes this transition by an additional 0.7 kcal (T/R shifts to ≈ 12). Bzf alone is insufficient to cause the transition, indicating that R/T is 10 or more in stripped metHb under these conditions. However, R/T is small enough, not more than 103, to be reversed by the differential (T versus R) binding energy of IHP. The R-T transition caused by IHP and Bzf acting together can be reversed by some covalent modifications that sever the stabilizing salt links at the chain termini and thus favor transition back to the R-state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call