Abstract
Monitoring and characterization methods that provide performance tracking of hydrogen evolution reaction (HER) at the single-nanoparticle level can greatly advance our understanding of catalysts' structure and activity relationships. Electrochemiluminescence (ECL) microscopy is implemented for the first time to identify HER activities of single nanocatalysts and to provide a direction for further optimization. Here, we develop a novel ECL blinking technique at the single-nanoparticle level to directly monitor H2 nanobubbles generated from hollow carbon nitride nanospheres (HCNSs). The ECL ON and OFF mechanisms are identified being closely related to the generation, growth, and collapse of H2 nanobubbles. The power-law distributed durations of ON and OFF states demonstrate multiple catalytic sites with stochastic activities on a single HCNS. The power-law coefficients of ECL blinking increase with improved HER activities from modified HCNSs with other active HER catalysts. Besides, ECL blinking phenomenon provides an explanation for the low cathodic ECL efficiency of semiconductor nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.