Abstract
Hydrogen is considered as an ideal and sustainable energy carrier because of its high energy density and carbon-free combustion. Electrochemical water splitting is the only solution for uninterrupted, scalable, and sustainable production of hydrogen without carbon emission. However, a large-scale hydrogen production through electrochemical water splitting depends on the availability of earth-abundant electrocatalysts and a suitable electrolyte medium. In this article, we demonstrate that hydrogen evolution reaction (HER) performance of electrocatalytic materials can be controlled by their surface functionalization and selection of a suitable electrolyte solution. Here, we report syntheses of few-layered MoS2 nanosheets, NiO nanoparticles (NPs), and multiwalled carbon nanotubes (MWCNTs) using scalable production methods from earth-abundant materials. Magnetic measurements of as-produced electrocatalyst materials demonstrate that MoS2 nanoflakes are diamagnetic, whereas surface-functionalized MoS2 and its composite with carbon nanotubes have strong ferromagnetism. The HER performance of the few-layered pristine MoS2 nanoflakes, MoS2/NiO NPs, and MoS2/NiO NPs/MWCNT nanocomposite electrocatalysts are studied in acidic and alkaline media. For bare MoS2, the values of overpotential (η10) in alkaline and acidic media are 0.45 and 0.54 V, respectively. Similarly, the values of current density at 0.5 V overpotential are 27 and 6.2 mA/cm2 in alkaline and acidic media, respectively. The surface functionalization acts adversely in the both alkaline and acidic media. MoS2 nanosheets functionalized with NiO NPs also demonstrated excellent performance for oxygen evolution reaction with anodic current of ~60 mA/cm2 and Tafel slope of 78 mVdec−1 in alkaline medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.