Abstract
Molecular hydrogen (H2 ) is a clean and renewable fuel that has garnered significant interest in the search for alternatives to fossil fuels. Here, we constructed an artificial DNAzyme composed of cobalt-protoporphyrin IX (CoPP) and G-quadruplex DNA, possessing a unique H2 Oint ligand between the CoPP and G-quartet planes. We show for the first time that CoPP-DNAzyme catalyzes photo-induced H2 production under anaerobic conditions with a turnover number (TON) of 1229 ± 51 over 12 h at pH 6.05 and 10 °C. Compared with free-CoPP, complexation with G-quadruplex DNA resulted in a 4.7-fold increase in H2 production activity. The TON of the CoPP-DNAzyme revealed an optimal acid-base equilibrium with a pKa value of 7.60 ± 0.05, apparently originating from the equilibrium between Co(III)-H- and Co(I) states. Our results demonstrate that the H2 Oint ligand can augment and modulate the intrinsic catalytic activity of H2 production catalysts. These systems pave the way to using DNAzymes for H2 evolution in the direct conversion of solar energy to H2 from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.