Abstract
We use first principles molecular dynamics to investigate unit displacement processes in amorphous silicon oxycarbides (SiOC) and demonstrate that the introduction of hydrogen (H) into these materials enhances their radiation resistance. Our simulations show that 100 eV knock-ons in H-free SiOC redistribute C through the formation of CO and CC bonds. H counteracts this trend by passivating dangling O bonds and preventing C from coming out of solution. This effect arises from the exceptionally high mobility of H, which leads to the saturation of radiation-induced O and C radicals even before the thermal-spike induced by a high-energy knock-on dies down. Our work suggests that fully hydrogenated SiOC is a promising radiation-resistant material for future nuclear energy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.