Abstract

The effects of a hydrogen environment on the fatigue crack growth rates in Ti-6A1-4V ELI (STA) and weld material were determined in the temperature range of ambient to -200°F. The hydrogen environment resulted in an acceleration of the crack growth rate and a change in the fracture mode for both materials in the temperature range of ambient to -100°F. At -200°F, there was no significant difference between the crack growth rates obtained in helium and hydrogen gas. The degree of hydrogen-enhanced crack growth was found to be dependent on the crack tip stress-intensity range, temperature, and microstructure of the material. The data is consistent with an embrittlement mechanism involving hydrogen diffusing ahead of the crack front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.