Abstract

By in situ bending tests inside an environmental transmission electron microscope, we found that from the pre-crack tip of single crystalline aluminium cantilevers, dislocations are emitted and self-organized to build a low angle grain boundary (LAGB), along which the crack propagates more easily in hydrogen atmosphere than in vacuum. Atomistic modelling suggests that the LAGB formed can strongly trap hydrogen atoms, and its cohesive strength can be substantially reduced. These results imply that the hydrogen-induced transgranular crack in a polycrystalline metal can proceed by repeating a process of dynamically forming a hydrogenated LAGB and its subsequent separation in grain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.