Abstract

Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.