Abstract

The hydrogen embrittlement susceptibility of electron beam melted Ti-6Al-4V alloy (ET) was compared with that of conventional wrought alloy (WT). Hydrogen permeation, electrochemical, and slow strain rate tensile tests as well as surface observation were conducted under a simulated sea environment. The results show that the hydrogen embrittlement susceptibility of ET is lower than that of WT, which can be attributed to the intense texture of ET with a smaller specific surface area of grain boundary, preventing hydrogen permeation. Moreover, with increasing depth of the ocean, the hydrogen embrittlement susceptibility of both ET and WT TC4 alloys increases considerably. This reduced hydrogen embrittlement resistance can be attributed to the degradation of the passivation film, accelerating the permeation flux of hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call