Abstract

Coarse-grained heat-affected zone (CGHAZ) exhibits the highest hydrogen embrittlement (HE) susceptibility, which changes under the influence of thermal cycle. In this study, slow strain rate tension (SSRT) tests were conducted to investigate the HE susceptibility of reheated CGHAZs and the critical hydrogen pressure for fracture failure. Results show that intercritically reheated CGHAZ (ICCGHAZ) possesses the lowest HE resistance. Analyses of HE index and fracture indicate that the critical hydrogen pressure is 3.5 MPa. Microstructure analysis reveals that HE susceptibility is associated with multiple factors, such as phase composition, grain coarsening, HAB density, and MA constituent. Blocky necklace-like MA constituent along prior austenite boundaries plays a predominant role in intensifying the HE susceptibility of ICCGHAZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call