Abstract

Sacrificial coatings, such as Zn and Cd, are used to protect steel against corrosion. During the electrodeposition of metals, hydrogen is evolved due to electrolysis. The evolved hydrogen may diffuse outward and become trapped in the substrate/coating interface or migrate inward into the steel lattice causing delayed embrittlement when the component is subjected to stress. This study reports two principal variables for Zn, Zn–Ni, and Cd coatings: (i) the quantity of hydrogen absorbed by the coating and substrate by vacuum thermal desorption and (ii) the permeability of the coating material to hydrogen by electrochemical permeation. The findings were analyzed in correlation with the microstructural characteristics of both the coating material and the coating/substrate interface. With Zn–Ni, both coating process and coating material combined to significantly reduce the risk of internal hydrogen embrittlement by (i) introducing the least amount of hydrogen during the electrodeposition process and (ii) by the ease with which hydrogen can be extracted by baking due to the presence of cracks in the coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.