Abstract

Modern advanced high strength steels (AHSS) for the automotive sector often contain retained austenite which promotes remarkable combinations of strength and ductility. These high strength steels may however be subject to a risk of hydrogen embrittlement. For the current contribution, hydrogen trapping and embrittlement behaviour were investigated in AHSS compositions having different levels of retained austenite. Hydrogen permeation tests revealed that hydrogen diffusion was slower for increased levels of retained austenite, being controlled most likely by reversible trapping at austenite-matrix interfaces. External hydrogen embrittlement tests via step loading also revealed that resistance to hydrogen was lower for increased levels of retained austenite. It was suggested that during step loading the hydrogen accumulated at austenite-matrix interfaces, leading to cracking when the applied stress was high enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call