Abstract

Hydrogen absorption occurs during steelmaking processes and causes detriment on mechanical properties, such as plasticity, fatigue strength and tensile strength, among others. The main purpose of the present paper is to study the hydrogen effects on the low cycle fatigue behaviour of a high strength steel, resulphurised and microalloyed. Before the cyclic tests, samples are cathodically charged using a H2SO4 acid solution. In some samples, poisons are added. The flow stress evolution during cycling was studied by analysing the so called ‘back’ and ‘friction’ stresses derived from the hysteresis loops. Fatigued specimens were observed through scanning electron microscopy and transmission electron microscopy. Additionally, the metallographic technique known as ‘silver decoration’ allows evaluation of the hydrogen distribution in the structure by applying energy dispersive analysis. The higher stress levels and cyclic softening rates exhibited by hydrogen charged samples in comparison with uncharged ones are related with the friction stress behaviour. The hydrogen is found mainly associated with MnS inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.