Abstract

We studied the fracture strain of polycrystal ɑ-iron at three different hydrogen concentrations and for three crystal sizes with molecular dynamics simulations (MDs). As the hydrogen concentration increases, a fine crystal model's fracture resistance is prone to below a comparatively coarse grain model. This finding elucidates that the most vulnerable area can alter from coarse grain zone to fine-grain zone in the welding heat-affected zone (HAZ) with the effect of hydrogen. A simplified model is thus built to predict the strain energy increment in different crystal size systems caused by the introduction of hydrogen atoms. This strain energy increment is not equal to the fracture energy reduction induced by the same amount of hydrogen insertion, demonstrating that elastic volume expansion of grain boundary (GB) caused by hydrogen is not the determining mechanism of intergranular failure. The density of triple or multi-junctions of GBs, which is typically dependent on the volume fraction of GBs, is the crucial factor for intergranular failure caused by hydrogen embrittlement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.