Abstract
With an increase of computational capabilities, ab initio molecular dynamics becomes the natural choice for exploring the nuclear dynamics of solids. As based on classical mechanics, the validity of this approach is, in-principle, limited to the high-T regime, whilst low-temperature simulations require inclusion of quantum effects. The methods commonly used to account for nuclear quantum effects are based on the path-integral formalism, which become, however, particularly time consuming when high accuracy methods are used for calculating forces. Recently, new efficient alternative approaches to account for quantum nature of nuclei have been proposed, using so-called quantum thermostats. In this work, we examine the simulations performed with the quantum colored-noise thermostat introduced by Ceriotti [Phys. Rev. Lett., 103:030603, 2009]. We present the tests of portable implementation of the quantum thermostat in the ABIN program, which has been extended to periodic systems through the interface to CASTEP, a leading spectroscopy-oriented plane-wave density functional theory code. The range of applicability of quantum-thermostatted molecular dynamics simulations for the interpretation of neutron scattering data was examined and compared to classical molecular dynamics and lattice-dynamics simulations, using solid formic acid case as a test bed. We find that the approach is particularly useful for the modeling of low-temperature inelastic neutron scattering spectra as well as provides some theoretical estimate for the low-limit of the mean kinetic energy. While finding the quantum-thermostat to seriously affect the dynamic properties of the title system, we illustrate to which extent the unperturbed response can be successfully recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.