Abstract

The vibrational spectrum of hydrogen and the parameters of H jump motion in the C15-type compound YFe2H2.6 have been studied by means of inelastic and quasielastic neutron scattering. It is found that hydrogen atoms occupying tetrahedral interstitial g (Y2Fe2) sites participate in the fast localized jump motion. The behavior of the elastic incoherent structure factor as a function of momentum transfer (measured up to Qmax≈4Å−1) is consistent with the two-site motion of H atoms within pairs of closely spaced g sites. In the studied T range of 140–390K, the temperature dependence of the jump rate of this localized motion is found to be non-Arrhenius; however, it can be described by two Arrhenius-like terms with the activation energies of 42 and 10meV in the ranges 295–390K and 140–240K, respectively. Our results also indicate that hydrogen dynamics in YFe2H2.6 is affected by considerable local lattice distortions resulting from hydrogenation of YFe2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.