Abstract

The hydrogen compatibility of metallic materials is often evaluated by conducting tensile tests of H-charged specimens in air or inert gas at ambient temperature; however, it is not clear whether the H distribution calculated with hydrogen diffusivity under a diffusion-controlled process is consistent with the actual distribution. This study estimated the hydrogen distribution in a H-charged nickel maintained in air at ambient temperature for a few months after exposure to hydrogen gas by using the Vickers hardness test and secondary ion mass spectrometry. Both methods provided similar H distributions, which were fitted by the solution of a diffusion equation under a diffusion-controlled process, and the hydrogen diffusivity was also determined. The estimated H distributions were successfully fitted by the solution of the diffusion equation, and the determined hydrogen diffusivity of nickel was consistent with literature data, indicating that the calculated H distribution reproduced the actual one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.