Abstract
Austenitic stainless steel 1.4435, a candidate material for high-pressure tubing for hydrogen applications, was investigated in two different stages of cold deformation (0 and 27 %) regarding its hydrogen embrittlement tendency. The determination of effective diffusion coefficients revealed slightly increased diffusion kinetics at 60°C for the cold-reduced material (8.0 · 10−15 m²/s) compared to the solution annealed one (5.0 · 10−15 m²/s). High-pressure gaseous hydrogen charging shows no differences regarding the degree of cold deformation with a maximum hydrogen concentration of 112 wt.-ppm. Furthermore, a significant ductility loss expressed by the ratio of the reduction of area was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.