Abstract

Diffusion behavior of hydrogen in ultrafine-grained palladium (Pd) is investigated by electrochemical permeation tests. The ultrafine-grained structure is produced by severe plastic deformation through high-pressure torsion (HPT). The diffusion behavior is compared with an annealed state with a coarse-grained structure and a cold-rolled state with dislocations and subgrain structures. Hydrogen permeation is analyzed in absorption step and desorption step at five different temperatures in the range of 15–35 °C. Hydrogen diffusion is retarded due to hydrogen trapping by dislocations. Grain boundaries act as rapid diffusion paths for hydrogen so that hydrogen diffusion is enhanced in the HPT-processed Pd samples with the ultrafine-grained structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.