Abstract

AH36 marine steel processed through high heat‐input welding is subjected to microstructural characterization, hydrogen permeation test, internal friction test, and slow strain rate tensile test to reveal its hydrogen diffusion and hydrogen embrittlement failure behaviors. Compared with the base metal, the coarse‐grained heat‐affected zone (CGHAZ) exhibits a significantly coarsened microstructure and decreased hydrogen trap density, resulting in a high hydrogen diffusion coefficient and short hydrogen permeation time. The presence of hydrogen yields a hydrogen‐induced Snoek internal friction peak and promotes the movement of the Snoek–Kê–Köster internal friction peak to the low‐temperature region. In addition, B and Kê peaks, which are not found in the base metal, appear in the CGHAZ. With increasing hydrogen content, the plastic loss and brittle fracture of the AH36 marine steel become increasingly significant, and the hydrogen embrittlement sensitivity of the heat‐affected zone increases compared with that of the base metal. The discontinuous yield phenomenon gradually disappears under slow strain rate tension owing to the weak pinning effect of the Cottrell atmosphere on mobile dislocations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.