Abstract

Amyloid fibrils are ordered protein aggregates comprising a hydrogen-bonded central cross-β core displaying a structural diversity in their supramolecular packing arrangements within the core. Such an altered packing results in amyloid polymorphism that gives rise to morphological and biological strain diversities. Here, we show that vibrational Raman spectroscopy coupled with hydrogen/deuterium (H/D) exchange discerns the key structural features that are responsible for yielding diverse amyloid polymorphs. Such a noninvasive and label-free methodology allows us to structurally distinguish distinct amyloid polymorphs displaying altered hydrogen bonding and supramolecular packing within the cross-β structural motif. By using quantitative molecular fingerprinting and multivariate statistical analysis, we analyze key Raman bands for the protein backbone and side chains that allow us to capture the conformational heterogeneity and structural distributions within distinct amyloid polymorphs. Our results delineate the key molecular factors governing the structural diversity in amyloid polymorphs and can potentially simplify studying amyloid remodeling by small molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.