Abstract

The temperature-programmed desorption of hydrogen from a Pt/TiO2 catalyst reduced in a wide temperature range (RT-773 K) has been studied. It is found that the presence of labile surface oxygen species increases the amount of hydrogen species formed at room temperature, and greatly decreases the quantities of adsorbed hydrogen species at medium temperatures. After the catalyst was reduced at high temperature, it is observed that two strong hydrogen desorption peaks appear at 450–600 K and above 600 K, which are ascribed to surface titanium hydride and the hydrogen species stored in the sublayer and bulk of the support, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.