Abstract
For different hydrogenated metal intercalated fullerides (Na10C60-H, Li12C60-H, and Li28C60-H) the activation energies for hydrogen desorption were determined by DSC. The Vyazovkin advanced method (VA) was used for the calculation of the reaction model free activation energy as a function of the extent of conversion a. Activation energies are highest for low a and decrease for increasing alpha, between around 200-145 and 245-175 kJ/mol for the Na and Li compounds, respectively. The decrease of activation energy as a function of the extent of conversion can be explained by an increasing charge transfer to the C60H36+y cage during desorption. Na intercalation leads to a significant thermodynamic destabilization for hydrogen desorption. Dehydrogenation enthalpies of 52 (Na10C60-H), 66 (Li12C60-H), and 69 kJ/mol H-2 (Li28C60-H) were determined. These values are lower compared to literature values for desorption of pure C60H36 (74 kJ/mol H-2). The onsets of hydrogen desorption are 185 degrees C (Na10C60-H), 260 degrees C (Li12C60-H), and 250 degrees C (Li28C60-H) compared to >400 degrees C for pure C60H36.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.