Abstract

Temperature programmed desorption was used to measure the desorption kinetics of hydrogen and its isotopes from chemical vapor deposited diamond surfaces. The desorption spectra are surprisingly simple considering the polycrystalline nature of the sample, exhibiting a single peak at ∼1300 K for a heating rate of 6 K/s. There is no isotope effect to the desorption, and neither the position of the peak maximum nor the peak width change with increasing hydrogen coverage. The maximum surface coverage achieved is approximately one monolayer. The spectra can be represented by a single peak first order desorption model, yielding kinetic parameters of Ea=51 kcal/mol and ν=5×107 s−1. An alternate model of multiple desorption sites with a Gaussian-distributed population gives kinetic parameters of Ea,mean=82 kcal/mol, ν=9×1012 s−1, and σ (the width of the Gaussian distribution)=3 kcal/mol. A comparison to desorption from low-index natural diamond surfaces is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.