Abstract

Carrying hydrogen in chemically bounded form as cycloalkanes and recovery of hydrogen via a subsequent dehydrogenation reaction is a potential option for hydrogen transport and delivery. We have earlier reported a novel method for transportation and delivery of hydrogen through liquid organic hydrides (LOH) such as cycloalkanes. The candidate cycloalkanes including cyclohexane, methylcyclohexane, decalin etc. contains 6 to 8 wt% hydrogen with volume basis capacity of hydrogen storage of 60–62 kg/m3. In view of several advantages of the system such as transportation by present infrastructure of lorries, no specific temperature pressure requirement and recyclable reactants/products, the LOH definitely pose for a potential technology for hydrogen delivery. A considerable development is reported in this field regarding various aspects of the catalytic dehydrogenation of the cycloalkanes for activity, selectivity and stability. We have earlier reported an account of development in chemical hydrides. This article reports a state-of-art in LOH as hydrogen carrier related to dehydrogenation catalysts, supports, reactors, kinetics, thermodynamic aspects, potential demand of technology in field, patent literature etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call