Abstract

To extract gold from low-grade ores, a solution of sodium cyanide is trickled over pads of crushed ore. During this operation, small quantities of hydrogen cyanide gas may escape to the ambient air. To assess these emissions, we collected air samples at monitoring stations located on opposite sides of a gold heap leach field at distances ranging from 1100 to 1500 ft from the center of the field. Hydrogen cyanide was detected in 6 of 18 ambient air samples at concentrations ranging from 0.26 to 1.86 parts per billion (ppb). Ambient air samples collected at residential properties located within 2600 ft of the leach field did not contain detectable concentrations of cyanide (detection level of 0.2 ppb). We used site-specific data and two steady-state air dispersion models, ISCST3 and AERMOD, to predict ambient air concentrations of cyanide at the sampling points. The ISCST3 model over-predicted the measured 8-h concentrations of hydrogen cyanide by a factor of 2.4, on average, and the AERMOD model under-predicted the air concentrations of hydrogen cyanide by a factor of 0.76, on average. The major sources of uncertainty in the model predictions were the complex terrain of the area and the uncertainty in the emission rates of cyanide from the leach field. The measured and predicted concentrations of cyanide in the air samples were not at levels that would pose a human health hazard for acute or chronic exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.