Abstract

In case of fuel cell vehicle application, hydrogen exhaust is inevitable. The catalytic combustion of hydrogen is considered as one of the most efficient counter-methods. The difficulty is to improve low temperature catalytic behavior of the catalyst and decrease air resistance of the reaction bed. This paper reported a kind of mesoporous ceramic coating monolithic Pt-based catalyst (Pt/Ce0.6Zr0.4O2/MgAl2O4/cordierite) prepared from only inorganic salt and alkali according to the generalized acid–base theory. The coating and catalysts were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and N2-adsorption. The results showed the coating had typical spinel crystallization structure and high surface area (more than 200 m2 g−1). The Ce–Zr oxide modification increased the surface area and improved the oxygen storage capacity. And the results of hydrogen catalytic combustion indicated that this monolithic catalyst had high activity for hydrogen combustion reaction, which could quickly start up even at 263 K. For low temperature catalytic combustion of hydrogen, the initial reaction temperature, H2 concentration, and space velocity were very important parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.