Abstract

The blue luminescence band with a maximum at 3.0 eV and the zero-phonon line at 3.33 eV (labeled BL2) is observed in high-resistivity GaN. Under prolonged ultraviolet (UV) light exposure, the BL2 band transforms into the yellow luminescence (YL) band with a maximum at 2.2 eV. Our hybrid functional calculations suggest that the BL2 band is related to a hydrogen-carbon defect complex, either CNON-Hi or CN-Hi. The complex creates defect transition level close to the valence band, which is responsible for the BL2 band. Under UV illumination, the complex dissociates, leaving as byproduct the source of the YL band (CNON or CN) and interstitial hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.