Abstract
Bio-ethanol is an excellent hydrogen carrier with a good potential to be used as a resource for on-board hydrogen production. In this work, a set of new Co incorporated mesoporous alumina (MA) catalysts, which were modified with Mg, were synthesized and tested in steam reforming of ethanol. Results proved that, the synthesis route of these materials had a highly significant effect on their catalytic performances. Co@Mg–MA and Co–Mg–MA catalysts, which were prepared by direct addition of Mg into the mesoporous alumina framework, gave the best performance in steam reforming of ethanol, with very high hydrogen yield values. This was concluded to be due to the presence of Co0 and CoO phases within the structures of these catalysts. However, Co–Mg@MA and Co@MA catalysts, which were prepared by the impregnation of Co/Mg or Co into mesoporous alumina, mainly catalyzed ethanol dehydration reaction to yield ethylene, rather than steam reforming. This was concluded to be due to the high Lewis acidity of these catalysts and the presence of cobalt aluminate phase in their structure. Activity tests of the synthesized catalysts were made both in a tubular reactor which was conductively heated and also in a focused-microwave system. Better energy utilization and more stable performance with much less coke formation were achieved in the focused-microwave reactor than the conventionally heated system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.