Abstract
We examine the properties of white dwarfs (WDs) accreting hydrogen-rich matter in and near the stable burning regime of accretion rates as modeled by time-dependent calculations done with Modules for Experiments in Stellar Astrophysics (MESA). We report the stability boundary for WDs of masses between 0.51 solar masses and 1.34 solar masses as found via time-dependent calculations. We also examine recurrent novae that are accreting at rates close to, but below, the stable burning limit and report their recurrence times and ignition masses. Our dense grid in accretion rates finds the expected minimum possible recurrence times as a function of the WD mass. This enables inferences to be made about the minimum WD mass possible to reach a specific recurrence time. We compare our computational models of post-outburst novae to the stably burning WDs and explicitly calculate the duration and effective temperature (Teff) of the post-novae WD in the supersoft phase. We agree with the measured turnoff time - Teff relation in M31 by Henze and collaborators, infer WD masses in the 1.0-1.3 solar masses range, and predict ejection masses consistent with those observed. We close by commenting on the importance of the hot helium layer generated by stable or unstable hydrogen burning for the short- and long-term evolution of accreting white dwarfs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.