Abstract

Imidazole (C3H4N2) is an important biomaterial for material research and applications. Our high-pressure Raman spectroscopic investigations combined with ab initio calculations on crystalline imidazole suggest that C-H---X (X = N, π) and N-H---N intermolecular hydrogen bonding interactions largely influence the nature of its structural and polymeric transformations under pressure. At pressures around ∼10 GPa, the reduction in the N---N distances close to the symmetrization limit and the emergence of the spectral features of the cationic form indicate the onset of proton disorder. The pressure-induced strengthening of the "blue-shifting hydrogen bonds" C-H---X (X = N, π) in this compound is revealed by the Raman spectra and the ab initio calculations. No polymer phase was retrieved on release from the highest pressure of 20 GPa in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.