Abstract

Bacterial cellulose (BC) with its inherent nanofibrils framework is an attractive building block for the fabrication of sustainable bioelectronics, but there still lacks an effective and green strategy to regulate the hydrogen-bonding topological structure of BC to improve its optical transparency and mechanical stretchability. Herein, we report an ultra-fine nanofibril-reinforced composite hydrogel by utilizing gelatin and glycerol as hydrogen-bonding donor/acceptor to mediate the rearrangement of the hydrogen-bonding topological structure of BC. Attributing to the hydrogen-bonding structural transition, the ultra-fine nanofibrils were extracted from the original BC nanofibrils, which reduced the light scattering and endowed the hydrogel with high transparency. Meanwhile, the extracted nanofibrils were connected with gelatin and glycerol to establish an effective energy dissipation network, leading to an increase in stretchability and toughness of hydrogels. The hydrogel also displayed tissue-adhesiveness and long-lasting water-retaining capacity, which acted as bio-electronic skin to stably acquire the electrophysiological signals and external stimuli even after the hydrogel was exposing to air condition for 30 days. Moreover, the transparent hydrogel could also serve as a smart skin dressing for optical identification of bacterial infection and on-demand antibacterial therapy after combined with phenol red and indocyanine green. This work offers a strategy to regulate the hierarchical structure of natural materials for designing skin-like bioelectronics toward green, low cost, and sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.