Abstract
A combination of high-throughput NMR titration experiments, UV-Vis absorption titrations and data collected from the literature on 1:1 H-bonded complexes has been used to characterise the H-bond properties of non-polar organic solvents: alkanes, perfluorocarbons, aromatic and halogenated organic solvents. The results are analysed in the context of the electrostatic solvent competition model, which assumes that solvent effects on intermolecular interactions can be interpreted based on the exchange of specific functional group contacts, with minimal involvement of the bulk solvent. For solvents where the H-bond parameters have been measured as solutes in carbon tetrachloride solution, the H-bond parameters measured here for the same compounds as solvents are practically identical, i.e. solute and solvent H-bond parameters are directly interchangable. For the very non-polar solvents, alkanes and perfluorocarbons, the experimental H-bond parameters are significantly larger than expected based on calculated molecular electrostatic potential surfaces. This suggests an increase in the relative importance of van der Waals interactions when electrostatic effects are weak, but there is no detectable difference between the solvation properties of cyclic and linear alkanes, which have different van der Waals interaction properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.