Abstract

Hydrogen-bonding interaction in acetonitrile oligomers is studied using density functional theory method. Two types of hydrogen-bonded oligomers are considered viz. cyclic and ladder. Different levels are used to optimize the geometry of acetonitrile monomer and found that at B3LYP/aug-cc-pvtz level the geometrical parameters and vibrational frequencies are in agreement with the experimental determinations. The BSSE corrected total energies of acetonitrile oligomers show that the cyclic structures are more stable than the ladder and the hydrogen bonds in former are stronger than those in the latter. Many-body analysis approach was used to study the nature of interactions between different molecules in these oligomers. It is found that the contribution from many-body energies to the binding energy of a complex is different in cyclic and ladder structures. An increase and decrease in the energy per hydrogen bond with cluster size for the cyclic and ladder structures, respectively, indicates the positive and negative hydrogen-bond cooperativity, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.