Abstract

We synthesized two miscible disordered diblock copolymers, poly(methyl methacrylate–b–vinylphenol) (PMMA-b-PVPh) and poly(4-vinylpyridine–b–ethylene oxide) (P4VP-b-PEO), through anionic living and reversible addition fragmentation chain transfer polymerizations, respectively; together, these polymers contained one hydrogen bond donor (PVPh) and three hydrogen bond acceptors (P4VP, PEO, PMMA). The inter-association equilibrium constants (KA) for the three different hydrogen bonded pairs followed the order PVPh/P4VP (KA = 1200) > PVPh/PEO (KA = 280) > PVPh/PMMA (KA = 47.1), suggesting that the PVPh units prefer to hydrogen bond with P4VP block, rather than PEO and PMMA blocks. Nevertheless, the excluded PMMA and PEO segments experienced weak intermolecular dipole–dipole interactions, such that the PMMA-b-PVPh/P4VP-b-PEO blends exhibited two-phase behavior, forming miscible PVPh/P4VP and PMMA/PEO phases, as evidenced using transmission electron microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.