Abstract

Eu-containing polyoxometalates, Na9EuW10O36, K11Eu(PW11O39)2, and K13Eu(SiW11O39)2, were electrostatically canned by a cationic surfactant, N-[12-(4-carboxylphenoxy)dodecyl]-N-dodecyl-N,N-dimethylammonium bromide, through the replacement of counterions, and the resulting surfactant-encapsulated polyoxometalate complexes were characterized in detail by elemental analysis as well as IR and NMR spectra. The carboxyls bearing in the complexes were confirmed existing in the dimer state through intermolecular hydrogen bonding, which leads to stable and reversible thermotropic liquid crystal properties of these complexes. The results of differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction revealed that these complexes underwent smectic mesophases during the heating and cooling cycles. These complexes displayed intrinsic luminescence both in the amorphous powder states and in their mesophases. The photophysical properties showed the dependence on the existing states of samples, and the quantum yields of the complexes in the liquid crystalline structures are higher than the corresponding amorphous powders. The present investigation provides an example for developing hydrogen-bonding-induced polyoxometalate-containing hybrid liquid crystal materials with intrinsic luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.